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Fish gelatin films incorporated with different oils: effect of thickness on 
physical and mechanical properties

Abstract

Properties of fish gelatin films incorporated with different oils at different thickness 
investigated. Gelatin films incorporated with all oils resulted in higher elongation at break 
(EAB) compared to control film, regardless of the oils type (P≤0.05). Increasing the thickness 
of gelatin films with oils decreased the solubility value (P≤0.05) significantly. However, water 
vapor permeability (WVP) of gelatin films containing oils increased as the thickness of films 
increased. FTIR spectra showed that incorporation of different oils into gelatin films gave effect 
on the molecular organization and intermolecular interaction in films matrix particularly at the 
wavenumber of Amide-I band and 1739-1744 cm-1. SEM analysis revealed the addition of oils 
into gelatin films enhanced the roughness of the film surface and cross-section. An appropriate 
combination of oils at moderate thickness could improve the mechanical and barrier properties 
of fish gelatin films thus fulfill the application either as coatings or films.

Introduction

Demand for food packaging materials that 
offers biodegradable properties, environmentally 
safe and good film-forming abilities has increased 
tremendously. Biodegradable films from proteins 
have been used as packaging materials mainly due 
to their abundance, biodegradability, film-forming 
ability and nutritional qualities. Specific structure 
of proteins provides a wider range of potential 
functionalities resulting in various intermolecular 
bonding (Ou et al., 2005; Prodpran et al., 2007).

Gelatin is a proteinaceous material that 
considered as a ‘waste’ and obtained from muscle 
food processing industry including meat, poultry 
and seafood (Nur Hanani, 2016). Gelatin can be 
used as a food additive, an edible coating, a film 
and as an encapsulating agent. Fish gelatin has 
been reported to have good film forming ability; 
yet, the film produced has poor water vapor barrier 
property (Jongjareonrak et al., 2006; Hoque et al., 
2010; Sahraee et al., 2017). This limits the further 
application of gelatin-based films as food packaging 
materials. However, properties of these films can be 
enhanced by adding some substances to the gelatin. 
Some hydrophobic substances such as oils, fats, 

waxes and fatty acids have been incorporated into 
fish gelatin films to improve the water vapor barrier 
and mechanical properties (Pérez-Mateos et al.,2009; 
Ahmad et al.,2012; Tongnuanchan et al., 2012; Arfat 
et al.,2014). Furthermore, the incorporation of oils 
containing bioactive compounds in gelatin could be 
beneficial to food packaging industries.

In spite of some research has revealed the 
improvement of gelatin films added with several of 
oils, lack of studies relate the effect of thickness in 
tandem with oil incorporation reported. Physically, 
adding more oil in the film forming solution will 
cause the films produced to have thicker films with 
the same amount of emulsion. Besides addition of the 
hydrophobic substances, the thickness of films and 
film-forming dispersion (FFD) also influenced the 
film performance (Longares et al., 2004; Ma et al., 
2012). Films with different thicknesses have different 
structural changes affecting the barrier and mechanical 
properties of those films. Previous studies showed 
that water vapor barrier and tensile properties were 
affected by reducing the film thickness. Longares 
et al. (2004) found the linear relationship between 
thicknesses of protein based edible film with water 
vapor permeability and elongation. 

From our literature studies, there is a little work 
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done regarding the effect of different thickness on 
the fish gelatin films incorporated with several types 
of oils. Therefore, the purpose of this study was to 
investigate the physical and mechanical properties of 
fish gelatin films incorporated with different oils (palm 
oil, soybean oil, corn oil, olive oil and lemongrass oil) 
with the thickness ranging from 40 to 80 μm.

Materials and Methods

Chemicals
Fish skin gelatin from warm water fish (~ 240 

Bloom) was purchased from Custom Collagen 
(Addison, USA). Palm oil (PO), corn oil (CO), 
soybean oil (SO), olive oil (OO) and lemongrass 
oil (LO) were purchased from Spectrum Chemicals. 
Glycerol and Tween-20 were obtained from Sigma-
Aldrich Co. (St Louis, MO, USA) and were used as a 
plasticizer and an emulsifier, respectively. 

Film preparation
The preparation of films was conducted by the 

method as reported by Nur Hanani et al. (2012) and 
Tongnuanchan et al. (2013) with slight modification. 
Gelatin powders were dissolved in deionized water 
at a concentration of 6% (w/v) to form film forming 
solution (FFS). Glycerol with 30% (w/w) was added 
based on gelatin content. Different types of oils were 
introduced into all gelatin solutions at a concentration 
of 25% (w/w based on gelatin content). To stabilize 
emulsion, Tween-20 was added as an emulsifier at 
20% (w/w based on oil). Control films were prepared 
from FFS without addition of oils. All solutions were 
stirred using a magnetic stirrer hotplate and heated to 
80ºC for 30 min. The film forming emulsions (FFE) 
were homogenized at 24,000 rpm for 3 min using 
a homogenizer (IKA Labortechnik homogenizer, 
Selangor, Malaysia). FFE with different amount were 
cast into petri dish plate (14 x 14 cm2) to produce 
films with various thicknesses; 40 µm (8 ml), 60 µm 
(10 ml), and 80 µm (12 ml). The film samples were 
conditioned in the humidity chamber at 50 ± 5% 
relative humidity (RH) and at a temperature of 23 ± 
2ºC prior to testing. 

Film thickness 
Film thickness was measured using a hand-

held digital micrometer (Mitutoyo, Serial No. 
7301, Mitutoyo Corp., Kawasaki-shi, Japan) with 
measurements were carried out at ten different film 
locations. 

Mechanical properties
Mechanical properties of fish gelatin films 

including tensile strength (TS), elongation at break 

(EAB) and Young’s Modulus (YM) were determined 
as described by Iwata et al. (2000) with slight 
modification using the INSTRON 4302 Series IX 
Machine (Instron Co., Massachusetts, USA) equipped 
with tensile load cell of 1000 N. 

Water solubility of films
The film solubility was determined according to 

the method of Nur Hanani et al. (2012) by trimming 
the samples into small strips (2 x 2 cm2) and dried in 
an oven (Memmert UNB 300, Germany). 

Water vapor permeability (WVP)
WVP of films were measured using a modified 

ASTM E-96 standard method (ASTM 1990) according 
to Nur Hanani et al. (2012). WVP of the film was 
calculated as follows:

WVP = w.l.A-.t-1 Δp

w is the weight loss of the cup (g); l is the film thickness 
(mm); A is the exposed area of film (m2); t is the time 
of gain (s) and Δp is the vapor pressure difference.

Light transmission and film opacity 
The barrier properties against ultraviolet (UV) 

and visible light of gelatin films were measured using 
UV-vis spectrophotometer (Genesys 10-UV-Vis 
Spectrophotometer, Thermo Scientific) according to 
the method described by Tongnuanchan et al. (2012). 

Attenuated total reflectance-Fourier transform 
infrared spectroscopy (ATR-FTIR)

The IR spectra for gelatin films at 60 μm 
thickness were determined using a Nicolet 6700 FT-
IR Spectrometer (Thermo Scientific, USA) equipped 
with horizontal attenuated total reflectance (ATR) 
Germanium, (Ge). Before film analysis, a background 
spectrum using a clean crystal cell was recorded. 
The spectra in the range of 500 nm to 4000 cm-1 with 
automatic signal gain collected in 32 scans with a 
resolution of 4 cm-1. 

Scanning electron microscopy (SEM)
Morphology of surface and cross-section of films 

were visualized using a scanning electron microscopy 
(SEM) (JEOL JSM 6400, Tokyo, Japan). The samples 
were mounted on bronze stub by means double-sided 
tape and were sputtered with gold (Sputter Coater 
BAL-TEC SCD 005). The photographs were taken at 
an acceleration voltage of 12-15kV. 

Statistical analysis
Statistical analyses were performed using one-

way analysis of variance (ANOVA) and Tukey’s 
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multiple test using Minitab 16 Software. Level of 
significance was set for P≤0.05.

Results and Discussion

Mechanical properties
Films incorporated with PO, CO and LO 

showed higher values (P≤0.05) of TS compared 
to control film (Table 1). Different components in 
PO (carotenes, tocopherols, tocotrienols, sterols, 
etc.) and LO (myrcene, citronellal, geraniol, neral, 
limonene, citral, etc.) might interact with gelatin at 
different degree, thus give different impact to TS of 
films. This is in agreement with Ahmad et al. (2012) 
who stating that different compound of lemon grass 
oil in gelatin films has caused higher TS compared 
to film with bergamot oil. Also, viscoelasticity of 
PO, CO and LO might contribute to its high TS 
compared to the other oils. The proper viscoelasticity 
facilitated the forming and stability of the smaller oil 
droplets during emulsion, thus contributing to strong 
interaction of oil and gelatin (Xiao et al., 2016; Nur 
Fatin et al., 2017). Furthermore, the effect of lipid 
addition on the mechanical properties of film depends 
on both the characteristics and its capacity to interact 
with the protein matrix. Among all incorporated films 
at the thickness of 60 µm, film with OO has the lowest 
TS and highest EAB. OO has high concentration of 
oleic acid content compared to other oils. Fabra et 
al. (2010) showed that oleic acid interacts with the 
protein matrix forming bonds through polar groups, 
where the interaction balances in the protein network 
acting as plasticizer has been modified and increasing 
the film flexibility.

Increasing the thickness of control films 
has shown a significant increase in TS values of 
films (P≤0.05). However, there are no significant 
differences (P>0.05) of TS values observed when the 
thickness of the composite films increased, regardless 
of oils. Yet the trend increased. Thicker films caused 
the polymer matrix become denser and higher in inter 
and intra molecular interactions and consequently 
more resistant to rupture (Mali et al., 2005).

The incorporation of oils into gelatin films 
showed higher (P≤0.05) EAB compared to control 
film at 60 µm thicknesses. This result might be due 
to the homogenization condition of FFE have lead 
the small lipid particles embedded in the protein 
network, which seemed to have some plasticizing 
effect, thus contributed to more stretchable films. 
Atarés et al. (2010) found that increasing cinnamon 
oil content into SPI film had led to more extensible 
films. Adding the thickness of control films from 
40 to 60 μm has increased (P≤0.05) the EAB value 

significantly. Nonetheless, the increase of composite 
films thickness resulted lower EAB values except 
for films with SO. Janson and Thuvander (2004) 
also found the similar effect probably due to large 
difference in the thickness.

YM is an indicator of film rigidity. No significant 
difference was observed for films with oils and 
control, irrespective of oils used. Nonetheless, film 
incorporated with PO had the highest values, 52.14%. 
This might be due to high saturated fatty acid (40.9% 
of palmitic acid) content in palm oil that cause the 
film more rigid and stiffen. 

Film solubility
Table 1 shows the solubility of fish gelatin 

films incorporated with different types of oils. Film 
solubility is the measure of the water resistance and 
integrity of film (Rhim et al., 2000). Adding oils 
into the films has decreased (P≤0.05) the solubility 
significantly, regardless the thickness. The addition 
of oils as hydrophobic substance into fish gelatin 
films could have lowered the solubility as supported 
by Ahmad et al. (2012). The films possibly have 
high-stable protein-lipid polymer network since they 
did not break apart after immersed into water for 24 
hours. Increasing the thickness of composite films 
contributed to decreasing solubility (P≤0.05) except 
for films with LO. The result suggested that the thicker 
the films will cause the non-polar oils interacted 
stronger with hydrophobic domain of gelatin, 
subsequently reduced the solubility. Comparing the 
films with oils at intermediate thickness, 60 μm, film 
incorporated with SO was less soluble, meanwhile 
film with CO has high solubility, 46.39%. 

Water vapor permeability
No significant effects of WVP were observed 

for the films with oils and control at 40 and 80 μm, 
respectively (Table 1). This means types of oil used 
do not affect the water barrier of the films. However, 
at 60 μm, WVP values were decreased (P≤0.05) when 
the oils were added to the solution except for the films 
with CO. The hydrophobic substance, in this case oils 
could increase the hydrophobicity of films, thereby 
reducing the water vapor migration through the films. 
Basically, the blend films based on protein have the 
decreased WVP with increasing content of lipids or 
hydrocarbon. The result was in agreement with Ma 
et al. (2012) who reported that the inclusion of olive 
oil decreased the WVP significantly in gelatin films 
compared to control film. Similar result was obtained 
by Tongnuanchan et al. (2013), where the WVP of 
gelatin films incorporated with different root essential 
oils (ginger, turmeric and plai) decreased gradually 
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with increasing concentration of oils. CO showed the 
highest WVP compared to the other oils probably 
due to the hygroscopic nature of the oils used which 
gave different effect on WVP of films where CO has 
been reported to contain relatively low level (<15%) 
of saturated fatty acids content (Robert, 2002). 
Besides, CO also has high degree of unsaturated 
fatty acids, specifically linoleic acid (C18:3) at 58% 
(Robert, 2002) that might cause the films have poor 
water vapor barrier. This result was supported by 
Tanaka et al. (2001) who found that the effect of 
reducing WVP was dependent upon the low degree 
of unsaturation of C18 fatty acids.  Oils have different 
ability to attract water to the film network and the 
interactions of oil components with some hydrophilic 
protein domains could promote the decrease in the 
hydrophobic character of film matrix (Ahmad et al., 
2012). Moreover, the possible formation of laminar-
like structures during film drying, as took place in CO 
incorporated film, and the reduction of the particle 
size of CO aggregations to increase the tortuosity 
factor in the continuous matrix could be the factor of 
the higher WVP (Fabra et al., 2010).

The results also showed WVP of the control films 
increased (P≤0.05) when the thickness increased. A 
similar trend was also found in films with PO, SO, 
CO and LO. As the film thickness increases, the film 
provides increased resistance to mass transfer across 
it, so the equilibrium water vapor partial pressure at 
the inner surface increases (Longares et al., 2004). 

Light transmission and opacity
The transmission of UV light was low for all 

films incorporated with oils, regardless the thickness 
and types of oils (Table 2). The results suggested that 
the incorporation of oils into the films could lower 
the light transmission and improve light barrier 
properties. Film at the thickness of 80 µm showed 
the lowest light transmission (%) at almost all 
wavelengths for all types of oil. This could be due to the 
light scattering effect at the interface of vegetable oils 
droplets imbedded in the film matrix (Tongnuanchan 
et al., 2012). The light transmittance for each film 
also increased as the wavelength increased. This 
is correlated with the lower light transmission of 
the films. Meanwhile, the opacity values of gelatin 
composite films with higher thickness from 40 to 80 
µm had increased significantly (P≤0.05) compared to 
control film, indicating the films were opaque except 
for films with LO. 

Attenuated total reflectance-Fourier transform 
infrared (ATR-FTIR) spectroscopy

FTIR spectra have been used to monitor the 
functional groups and structural changes of film 
samples at molecular level through a detailed spectral 
analysis (Ahmad et al. 2012). As shown in Figure 
1, the major absorption peaks of gelatin films were 
found at 1648-1657 cm-1 (amide I), 1549-1555 cm-1 
(amide II), 1240 – 1241 cm-1 (amide III), 3304-
3319 cm-1 (amide A) and 2924-2928 cm-1 (amide B). 
All the films incorporated with oils showed higher 
absorbance compared to control film, which was the 
characteristic to the saturated fatty acids (Alexa et 
al., 2009).

Amide-I band illustrating the C=O stretching 

Table 1.Mechanical properties, solubility and water permeability of fish gelatin films 
incorporated with various oils and different thickness.

Different superscript letters (a,b,c,d) indicate significant differences (P≤0.05) in the same column 
under the same type of oil with different thickness including control. Different superscript letters 
(A,B,C,D) indicate significant differences (P≤0.05) in the same column under the same thickness 
including control.



 Norfarahin et al./IFRJ 25(6): 2503-2510 2507

vibration where, control film, PO, SO, CO, OO and 
LO incorporated gelatin films displayed the amide-I 
bands at the wavenumbers of 1648.33, 1648.33, 
1657.06, 1651.24, 1657.06 and 1651.24 cm-1, 
respectively. Different conformation and orientation 
of polypeptide chains as affected by incorporation 
of oils showed the spectral differences between 
different films samples. Spectral result showed that 
the peak of gelatin films incorporated with SO and 
OO had shifted to the higher wavenumber at this 
band compared with other films. This might be due 
to the interaction of gelatin network with SO and 
OO had produced high amount of low molecular 
weight components, which C=O reactive group 
could be more exposed and become more reactive 
between α-chains (Kittiphattanabawon et al., 2010). 
Besides that, narrow absorption, normally centered 
on 1650 cm-1 is indicative of olefinic unsaturation 
(C=C) (John, 2000). This justifies the result of film 
with OO that possessed higher wavenumber at this 
band, related to the high oleic acid content (55-
85%) in OO. Meanwhile for amide II (illustrating 
the bending vibration of N-H groups and stretching 
vibration of C-N groups) bands were observed at 
the wavenumber of 1549.38 – 1555.20 cm-1 with SO 
and CO incorporated gelatin film having the highest 
frequencies. 

Amide-III (presented the vibrations in plane 
of C-N and N-H groups of bound amide as well as 
vibrations of CH2 groups of glycine backbone and 
proline side-chains of gelatin molecules) bands were 
observed at the wavenumber of 1240.26 – 1241.09 
cm-1. It was shown that the peak of control film was 

lower than the other films. The peak around 1740 
cm-1 was attributed to ester carbonyl functional group 
of the triglycerides. There was no peak observed in 
control film since there was an absent of oil. 

All films had similar peaks at amide-A region 
represented the NH-stretching coupled with hydrogen 
bonding, which indicated the present of nitrogen 
in gelatin as a protein biopolymer. The highest 
wavenumber can be seen in CO incorporated film, 
while control film showed the lowest wavenumber. 
The peak around 2925 cm-1 is attributed to the 
symmetric stretching vibration of the aliphatic CH2 
group (Vlachos et al., 2006). The peak heights 
denoted the percentage of the hydrogen-carbon bond 
coupled by cis-double bond (=CH) which represent 
triglyceride functional groups present in the oil. 
The peaks were higher in films added with oils, in 
comparison with the control film. Also, gelatin film 
incorporated with LO had higher wavenumber at 
this band compared to others probably due to the 
indicative for the absent of aromatic compound 
(Edwin et al., 2012).

The peak around 1040 cm-1 was found in all film 
samples, corresponding to the present of OH-group 
contributed by glycerol which added as a plasticizer 
(Bergo and Sobral, 2007). Therefore, incorporation 
of oils into gelatin films affected the molecular 
organization and intermolecular interaction in film 
matrix.

Scanning electron microscopy (SEM)
SEM images (Figure 2) show that control film 

Table 2.Light transmittance and transparency value of fish gelatin films 
incorporated with various oils and different thickness.

Different superscript letters (a,b,c,d) indicate significant differences (P≤0.05) 
in the same column under the same type of oil with different thickness 
including control. Different superscript letters (A,B,C,D) indicate significant 
differences (P≤0.05) in the same column under the same thickness including 
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has a smooth surface compared to other films. This 
indicates that there is homogenous protein network 
present in control film without lipid. Besides, smooth 
and continuous surface also can be seen in LO 
incorporated film, where LO might be evaporated 
during drying, thus lead to the micro-pores formation 
throughout the films. Similar images had been 
reported by Tongnuanchan et al. (2012) whereby fish 
gelatin films incorporated with citrus essential oils 
have continuous surface as the FFS had the stable 
emulsion system and no collapse of emulsion occurred 
during FFS dehydration. LO also might be more 
likely to localized inside the film network, whereby 
no oil droplet on the surface of film was noticeable 
(Tongnuanchan et al., 2014). This is contradicted 
with the other films incorporated with PO, SO, CO 
and OO which SEM images showed discontinuous 
surface with heterogeneous distribution of oils. 
Nevertheless, SO incorporated film has less oil 
droplets agglomerates on the surface compared to PO, 
CO and OO. This could be attributed by the protein-
lipid interaction and the emulsion system in the films 
that not well-homogenized. Films incorporated with 
PO and CO have the most cavities and porous. This 
uneven structure could be related to the differences of 
WVP obtained in films. 

From cross-section images, control film has more 
homogeneous structure compared to oil incorporated 
films. Protein bonding was suggested being well-
interacted to each other without disruption of oil 
droplet. Similar image can be seen in the film 
incorporated with LO where the structure was more 
compact and smoother than the other oils. However, 
the addition of oils into gelatin films enhanced the 
roughness of the film cross-section. CO incorporated 
film showed the most porous structure for cross-

section image and might be the reason of high WVP 
value compared to the other oil incorporated films 
at 60 µm.The surface of films incorporated with 
OO showed oil droplets were full and compact to 
each other, whilst the cross-section showed lack of 
pin hole or crack. This structure could prevent the 
process of water passage through the film.

Conclusion

The incorporation of different oils into gelatin 
films gave significant effect on physical and 
mechanical properties whereby highest TS, EAB and 
YM values were found in films incorporated with 
LO, OO and PO, respectively. WVP of gelatin films 
also reduced with the oil added. However, increasing 
films thickness has caused an increase in the WVP, 
regardless the oil types. This study has provided 
additional evidence with respect to thickness effect 
towards physical and mechanical properties of 
gelatin composite films. Also, use of appropriate 
oils at moderate thickness is crucial to ensure films 
produced can fulfil future applications either as 

Figure 1.ATR-FTIR spectra of fish gelatin films 
incorporated with different vegetable oils.

Figure 2.SEM micrographs of surface (magnification: 
1000x) and cross section (magnification: 2000x) of films 
from fish skin gelatin incorporated with different oils (60 
µm).
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coatings or packaging films. 
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